已知函数f(x)=x2-(a-2)x-alnx,(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设函数g...

发布网友 发布时间:10小时前

我来回答

1个回答

热心网友 时间:10小时前

(Ⅰ)由f(x)=x2-(a-2)x-alnx,
得f′(x)=2x?(a?2)?ax=(2x?a)(x+1)x(x>0).
当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增.
∴函数f(x)的增区间为(0,+∞).
当a>0时,由f′(x)>0得x>a2,由f′(x)<0得0<x<a2.
∴函数f(x)的增区间为(a2,+∞),减区间为(0,a2);
(Ⅱ)当x∈(0,a]时,f(x)min=f(a2)=a?a24?alna2,
由g(x)=-x3-ax2+a-a24,得g′(x)=?3x2?2ax=?3(x+a3)2+a23.
当a>0时,g′(x)<0在(0,+∞)恒成立,g(x)在(0,+∞)上为减函数,
当x∈(0,a]时,g(x)<g(0)=a?a24.
a?a24?alna2?a+a24=?alna2.
①当?alna2≤0时,则|f(α)-g(β)|min=0<a显然成立,即a≥2.
②当?alna2>0时,则|f(α)?g(β)|min=?alna2<a,即2e<a<2.
综上可知:a>2e;  
(Ⅲ)∵x1,x2是方程f(x)=c的两个不相等的实数根,不妨设0<x1<x2,
则x12?(a?2)x1?alnx1=c,x22?(a?2)x2?alnx2=c.
两式相减得x12?(a?2)x1?alnx1?[x22?(a?2)x2?alnx2]=0.
即a=x12+2x1?x22?2x2x1+lnx1?x2?lnx2.
又∵f′(a2)=0,当x>a2时f′(x)>0,当0<x<a2时f′(x)<0.
故只要证明x1+x22>a2即可,即证x1+x2>x12+2x1?x22?2x2x1+lnx1?x2?lnx2.
即证明lnx1x2<2x1?2x2x1+x2.
设t=x1x2(0<t<1),
令g(t)=lnt?2t?2t+1,
则g′(t)=(t?1)2t(t+1)2≥0.
则g(t)=lnt?2t?2t+1在(0,+∞)上是增函数,
又∵g(1)=0,
∴t∈(0,1)时总有g(t)<0成立.
即f′(x1+x22)>0.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com