发布网友 发布时间:2024-10-24 00:15
共1个回答
热心网友 时间:2024-10-29 12:28
s(n) = pn^2 + qn + r,
a(1) = s(1) = p+q+r.
s(n+1) = p(n+1)^2 + q(n+1) + r,
a(n+1) = s(n+1) - s(n) = p(2n+1) + q = 2np + p + q.
a(1)=p+q+r,
n>=2时,a(n) = 2p(n-1) + p+q.
{a(n)}是等差数列充要条件是,
n=1时,也应有,a(n) = 2p(n-1) + p + q.
也即,p+q =a(1) = p+q+r, r = 0.
验证:
当r = 0, s(n)=pn^2 + qn^2 + r时,a(n) = 2p(n-1) + p + q,
{a(n)}是首项为a(1)=p+q,公差为2p的等差数列。
a(n) = 2p(n-1) + p +q时,
s(n) = pn(n-1) + (p+q)n = pn^2 + qn.
综合,{a(n)} 前n项和s(n) = pn^2 + qn + r时,r=0是{a(n)}为等差数列的充要条件。。