发布网友 发布时间:2024-10-23 21:29
共1个回答
热心网友 时间:2024-11-07 05:08
(1)解:设{an}的公差为d,则
Sn=d2n2+(a1-d2)n
①.
又{Sn}也是公差为d的等差数列,结合①知,Sn=d2n.
∴a1-d2=0,且d=d2,∴d=12,
则a1=d2=122=14.
∴an=a1+(n-1)d=14+12(n-1)=n2-14;
(2)证明:由an=n2-14,得:a1=14,a2=34,a5=94.
而a1,a2,a5恰为等比数列{bn}的前三项,
∴b1=a1=14,等比数列{bn}的公比q=a2a1=3414=3.
∴bn=b1qn-1=14×3n-1,∴cn=24bn(12bn-1)2=24×14×3n-1(12×14×3n-1-1)2=2×3n(3n-1)2.
当n≥2时,2×3n(3n-1)2<2×3n(3n-1)(3n-3)=2×3n-1(3n-1)(3n-1-1)=13n-1-1-13n-1.
∴当n≥2时,Tn=32+2×32(32-1)2+…+2×3n(3n-1)2
≤32+(12-132-1)+(132-1-133-1)+…+(13n-1-1-13n-1)=2-13n-1<2,
且T1=32<2,故对任意n∈N*,Tn<2.