您的当前位置:首页正文

CDMA优化关键参数指标释义

2024-07-16 来源:赴品旅游



优化关键参数指标释义







目录

1序言..................................................错误!未定义书签。

2功率过载参数..........................................................

2.1参数释义....................................................................43切换参数..............................................................5

3.1软切换过程..................................................................5

3.2切换参数释义................................................................54控制信道参数..........................................................7

4.1参数释义....................................................................75接入参数..............................................................8

5.1参数释义....................................................................86PN复用、PN混淆--------------------------------------------------------9

6.1 概念释义....................................................................9 7 搜索窗................................................................10

10 8 小区半径..............................................................12
7.1 参数释义....................................................................

8.1概念释义....................................................................

12
9关键性能指标..........................................................13

9.1呼叫建立成功率..............................................................

13
9.2业务信道掉话率..............................................................

13
9.3软切换成功率................................................................

13
9.4软切换比例..................................................................

13
9.5话务掉话比..................................................................

14
9.6坏小区......................................................................

14
9.7系统接通率..................................................................

14



9.8寻呼成功率..................................................................14

10邻区优化.............................................................15

10.1邻区列表...................................................................15

10.2邻接小区...................................................................15

10.3邻区列表配置原则...........................................................15

11双载频换频切换.......................................................17

11.1数据库方式实现换频切换.....................................................17

11.2伪导频方式实现换频切换.....................................................18

11.3两种换频切换方式比较.......................................................19

12常见网优问题分析.....................................................21

12.1越区覆盖问题...............................................................21

12.2搜索窗设置问题.............................................................21

12.3影响话务掉话比指标的问题...................................................21

12.4 基站资源拥塞问题...........................................................22





1功率过载参数

前向功率过载控制采用了3级控制,即T_SETUP限制呼叫建立门限,缺省设为90%T_HO邙限制软切换加门限,缺省设为95%)、T_PWRUP(限制现有呼叫功率增长门限,缺省设为100%)。

1.1参数释义

T_SETUP:限制呼叫门限,T_SETUPXMaxOverLoadPwr。当前向发射总功率大于T_SETUPXMaxOverLoadPwr(过载使用功率门限)而小于T_HOXMaxOverLoadPwr时,限制在本载频的呼叫,通过适当的加大该值,来提供呼叫的功率分配。但允许切换,这样给切换加预留一定的功率,因为对用户来讲切换掉话要比呼叫失败严重的多。

T_HO:限制切换门限,T_HOXMaxOverLoadPwr。当前向发射总功率大于T_HOX
MaxOverLoadPwr而小于T_PWRUPXMaxOverLoadPwr时,系统限制软切换加,可通过适当的加大该值,来提供软切换加的功率分配。

T_PWRUP:限制功率增长门限,T_PWRUPXMaxOverLoadPwr,当前向发射总功率大于T_PWRUP X MaxOverLoadPwr时限制现有呼叫的功率增长,以保护HPA,避免出现过功率关断的现象,这样会造成整个载频瘫痪的严重后果。

门限时,系统拒绝补充信道的建立,通过适当的减小该值,来减少数据业务在忙时对功率资源的
P_SETUP:补充信道建立门限,即限制数据业务门限,P_SETUPXMaxOverLoadPwr。当大于该

占用,优先保证忙时语音业务。缺省设为85%





2切换参数

2.1软切换过程

软切换过程如下图所示

()

(2X3)

(4)

(5) (6) (7)

Time


Neighbor
Set

Can'iidate Set

Aztive
Set

NeigW or Set


1.

2.
3.
4.
5.
6.
7.

软切换过程包括以下几步:

2-1 软切换过程示意图

选集中;
MS检测到某个导频强度超过T_ADD,发送导频强度测量消息PSMMBS,并且将该导频移到候
BS发送切换指示消息;
MS将该导频移到激活集,并发送切换完成消息;
激活集中某个导频低于T_DROP,移动台启动切换去掉计时器;切换去掉计时器T_TDROP期满,移动台发送导频强度测量消息;BS发送切换指示消息;
MS把该导频从激活集移至相邻集,并发送切换完成消息。

2.2切换参数释义

T_ADD:导频信号加入门限,如果移动台检查相邻导频信号集或剩余导频信号集中的某一个导频信号的强度达到T_ADD,移动台将把这一导频信号加到候选导频信号集中,并向基站发送导频强度测量报告消息(PSMM)。推荐值是-13dB

T_DROP:导频信号去掉门限,移动台需要对在有效导频信号集和候选导频信号集里的每一个导频信号保留一个切换去掉定时器。每当与之相对应的导频信号强度小于T_DROP时,移动台需要打开定时器。如果与之相对应的导频信号强度超过T_DROP,移动台复位该定时器。如果达到



T_TDROP,移动台复位该定时器,并向基站发送PSMM消息。如果T_TDROPs改变,移动台必须在100ms内开始使用新值。推荐值是-15dB

T_TDROP:切换去掉定时器,移动台对在有效导频集和候选导频集里的每一个导频都有一个切换去掉计时器,当与之相对应的导频强度比特定值T_DROP小时,计时器启动,若该定时器超时,若该定时器所对应的导频信号是有效导频信号集的一个导频信号,就发送导频信号强度测量消息。

如果这一导频信号是候选导频信号集中的导频信号,它将被移至相邻导频信号集。推荐值是3

T_COM:有效导频信号集与候选导频信号集比较门限,当候选导频信号集里的导频信号强度比有效导频信号集中的导频信号超过此门限时,移动台发送一个导频信号强度测量报告消息。基站置这一字段为候选导频信号集与有效导频信号集比值的门限,单位为0.5dB。推荐值是5







3控制信道参数

3.1参数释义

控制信道的功率都是在TRX上电后通过自动定标确定的,通过设置控制信道增益来调节。

PILOTCH_GAIN:导频信道在CDMA前向信道上是不停发射的,每个小区都有一个唯一的导频信号加以区别,导频信道用于帮助所有在基站覆盖区中工作的移动台进行同步和切换。导频信道增益设置的过大,导致控制信道占总功率的百分比过多前向容量下降,而容易引起功率资源的拥塞;设置的过于偏小,影响小区覆盖和软切换的成功。导频信道功率是通过设置导频信道增益

(PILOT_GAIN)来调节的,缺省取值是225

SYNCCH_GAIN:同步信道用来为移动台提供时间和帧同步,在基站覆盖区中开机状态的移动台利用它来获得初始的时间同步。该字段设置值大小对系统的影响,设置的越大,占用的基站的前向发射会越大则前向容量会急剧的下降,设置的太小,则会使手机能捕获到导频信道但是在捕获导频信道后不能正常的解调同步信道,这会使小区的覆盖会很小。该值的推荐设置是比导频信道的增益低10dB左右。缺省设为185

该字段设置值大小对系统的影响,设置的越大,占用的基站的前向发射会越大则前向容量会急剧的
PAGECH_GAIN:寻呼信道用于在移动台未被指配到业务信道时基站向移动台发送的控制信息。

这会使小区的有效覆盖会下降。缺省设为219
下降,设置的太小,则会使手机能捕获到导频信道但是在捕获导频信道后不能正常的解调寻呼信道,





4接入参数

4.1参数释义

INIT_PWR:接入的初始功率偏置。用于接入信道初始发射时的开环功率控制,提高接入成功率。INIT_PWR设大,有利于捕获接入信道,提高接入成功率,减小接续时延,但增加了接入信道干扰,会导致反向链路的阻塞,降低接入信道的性能;设小,会使移动台在接收到基站的确认之前发送更多的接入试探,增加了接入信道的负载,同时增加接入信道碰撞的几率,增大接续时延。

PWR_STEP:功率增量,是接入试探序列发射功率的增加步长。用于调整接入信道开环功率控制步长,在接入试探序列中连续的接入试探之间增加发射功率的值。PWR_STEP设大,有利于提高接入成功率,减小接续时延,在反向链路上有附加干扰的情况下,可以增加基站接收到接入试探的可能性,但是会增加干扰;设小,会使移动台在接收到基站的确认之前发送更多的接入试探,增加了接入信道的负载,同时增加接入信道碰撞的几率,增大接续时延。

NUM_STEP:接入试探数。一次接入试探序列由NUM_STEP+1个接入试探组成。NUM_STEPPWR_STEP之间存在折衷,NUM_STEP设大,会增加一个接入试探序列就完成接入的可能性,但是增加了反向链路的干扰,同时增大接续时延,该参数值太小,会减小一个接入试探序列就完成接

MAX_CAP_SZ:最大接入信道消息包长度。入的可能性,会导致多个接入试探序列,也会增大接续时延。

PAM_SZ:接入信道前缀长度。
下图为接入参数的缺省设置值。

4-1接入信道参数缺省值设置示例5PN复用、PN混淆

5.1概念释义

PN复用是CDMA系统中常见的现象,但是有严格的要求。它要求复用导频的小区复用距离相隔足够远,不会互相干扰。如下图所示:



ABC分别是三个小区,其中AC小区复用导频,C为一高山站,覆盖范围广。当MS处于AB的切换区域内,MS除了能够接收到AB小区的信号,还会收到C小区的信号,由于AC小区同导频,所以移动台把C小区的信号当作A小区信号的一个多径去解调,显然这个解调是无效的,这样C小区的信号对移动台接收前向帧形成了一种干扰,最终导致掉话。

假设A导频为12,B导频为150,C导频为9,业务区的PN_INC3,C为一高山站,覆盖范围广。

决为A,同样对移动台接收前向帧形成干扰,最终可能导致掉话。
C的导频信号到达MS所处的位置,由于链路时延比较大,移动台可能会将该导频信号误判

C或者A小区的导频进行修改。如果业务区内基站数目比较少,整体分布比较稀疏,可以考虑
解决方法:

在规划初期就将PN_INC设置得大一些。

6搜索窗

搜索窗口即移动台搜索时延宽度,以PN码片为单位。由于传播时延的原因,移动台想要检测的导频不会刚好在预期的时间到达,所以它必须在合理的时延窗口上进行搜索,直到找出导频的实际时序。包括三种搜索窗口:SRCH_WIN_A(激活集和候选集搜索窗口),SRCH_WIN_N(相邻集搜索窗口),SRCH_WIN_R(剩余集搜索窗口)。

搜索窗口的大小与搜索速度成反比关系。缩小搜索窗口,移动台将无法搜索到窗口外的强导引信号,如果具有足够强度的多径信号,但由于搜索窗口过小将有可能造成有用导引信号的丢失,而没有被基站识别,将会丢失一些明显的多径,对系统造成强烈的干扰,降低信号的Eb/Io,导致通话质量下降或掉话。反之,如果此窗口设置的过大,将有助于收集所有的多径能量,但会导致测量过程很慢,将会使系统把大量的处理能力都浪费在无用的搜索上,对高速移动台不利。





6.1参数释义

SRCH_WIN_A:搜索激活集和候选集中导频。移动台的搜索窗口以激活导频集中最早到来的可用导频多径成分为中心。搜索窗宽度如设置较小,会使激活集或候选集有用的信号落在搜索窗外,这些信号会变成干扰影响链路质量,设置过大会导致无用的信号也落在搜索窗内,也会影响质量。如设置过大,则搜索相邻导频速度慢,并可能影响切换成功。

SRCH_WIN_N:搜索相邻集中导频。该参数不仅与相邻导频的多径有关,还与相邻导频到参考导频的相对传播时延有关。该参数设置要保证相邻导频多落在以参考导频最早到达的多径为时间参考,以相邻导频的PN偏置为搜索中心的相邻集内。

SRCH_WIN_R:搜索剩余集中导频。该参数设置要保证剩余导频落在以参考导频最早到达的多径为时间参考,以剩余导频的PN偏置为搜索中心的剩余集内。

搜索窗口设置和对应码片关系如下表所示。下表取自叙DAS网络规划与优化培训教材》4.5章节。

SRCH_WIN_A SRCH_WIN_N SRCH_WIN_R

窗口宽度(PN
片)

实际半径(公里)

SRCH_WIN_A SRCH_WIN_N SRCH_WIN_R

窗口宽度(PN
片)

实际半径(公里)

0

4

60

14.634

1





19.512

2





24.39

3





31.707

4

14

3.4146

12

160

39.024

5

20

4.878

13

226

55.1214

6

28

6.8292

14

320

78.048





7

40

9.756

15 (904)

452

110.2428

6-1搜索窗口尺寸







7小区半径

7.1概念释义

小区半径,单位是l/8chip,小区半径与实际对应距离的关系如下:
假设后台设置的基站半径为R(1/8chip),因为1chip对应于0.2439公里,所以此时基站半径其对应的公里数为(R/8)*0.2439,同时考虑到环路时延的关系,实际小区半径的公里数为[(R/8)*0.2439]/2= 0.01524375*R

注释:8.19版本后台“小区半径”参数的单位已改成了1chip

接入信道捕获搜索窗宽(ACC_ACQUISIT_SCH_W)和基站半径(Radius)的意义是相同的,单位都是1/8chip,信道板在设置接入信道的搜索窗宽是取后台无线资源设置中的接入信道捕获搜索窗宽和基站半径中的较小值,因为不同信道板支持的小区半径不同。两者关系:ACC_ACQUISIT_SRCH_W= Radius*8。所以在修改这两个参数时需要一起修改。







8关键性能指标

8.1呼叫建立成功率

呼叫建立成功率是评价系统性能的一个非常重要的指标,反映系统接通呼叫的能力。成功率低在移动用户端反映出来就是难以打通电话问题,也反映系统提供业务和保证服务质量的能力。

呼叫建立成功率=呼叫建立成功次数/呼叫尝试次数*100%。呼叫建立成功次数:在主叫、被叫 呼叫中,BSC成功分配业务信道的总次数。统计消息为
“AssignmentCompletion”。不含切换,不含SMSTCH上的收发时BSC成功分配业务信道的总次数。

呼叫尝试次数:移动用户作主、被叫的试呼次数,不含切换的尝试次数,不含SMSTCH上的收发时的试呼次数。统计消息为BSC收到主叫发来的“origination”消息和被叫MS发回的“pageresponse ” 消息。

8.2业务信道掉话率

业务信道掉话率指标用于反映系统是否稳定运行的状况和给用户提供服务质量的好坏程度。

业务信道掉话率=业务信道掉话总次数/业务信道的占用总次数。
业务信道掉话总次数:因系统原因导致语音业务接续中,在呼叫建立后,业务信道的异常释放次数。包含无线接口消息失败、无线接口失败、操作维护干预、定时器超时、设备故障和BSMSC之间协议错误等原因。

业务信道的占用总次数:在语音业务中,BSC成功分配业务信道的总次数。不含SMSTCH上的收发时,BSC成功分配业务信道的总次数,不含切换时BSC成功分配业务信道的总次数。

8.3软切换成功率

软切换成功率越高,用户在通话过程中掉话的可能性就越少。软切换包括BSC之间、BSC内不同BTS间、BTS内不同CELL间的软切换。

系统软切换成功率=软切换成功次数/软切换请求次数*100%

8.4软切换比例

反映业务信道用于呼叫和用于软切换的比例。软切换占用实际的物理资源越少,软切换占用业务信道越少则呼叫占用越多,所以软切换比例控制在某个范围内将会提高运营商的效益。
软切换比例=(业务信道承载的ERL(含切换)-业务信道承载的ERL(不含切换)/业务信道承载的ERL(含切换))*100%



业务信道承载的ERL含切换:系统中业务信道完成语音、短信等业务时所承载的总话务量。含切换)单位:Erl。话务量统计参考点为:BS收到消息开始,到发出CLEARCOMPLETE消息结束。含切换时业务信道的话务量。

业务信道承载的ERL不含切换:系统中各业务信道完成语音、短信等业务所承载的话务量,不含切换话务量。单位:Erl。统计参考点:话务量统计从BS收到ASSIGNMENTREQUEST消息开始,到发出CLEARCOMPLETE消息结束。不含切换时业务信道的话务量。

8.5话务掉话比

该指标反映业务信道每承载多少话务量掉话一次的情况。是衡量提供话务服务的稳定性和可靠

性的依据。

话务掉话比=业务信道承载的ERL不含切换*60/业务信道总掉话次数。

业务信道承载的ERL不含切换:见4.4章节内容“业务信道承载的ERL不含切换”。业务信道总掉话次数:见4.2章节内容“业务信道掉话总次数”。

8.6坏小区

坏小区指的是在不含切换时话务量在2.5Erl以上,且业务信道掉话率超过2.5%的小区数量。坏小区比例=坏小区数量/小区总数*100%

8.7 系统接通率
指网络建立呼叫业务的接通次数,包括呼转的建立、被叫用户应答、久叫不应、呼叫转接、紧

急呼叫的网络系统接通次数。该指标在交换侧统计。

系统接通率=系统接通总次数/系统试呼总次数。

8.8寻呼成功率

寻呼成功率=寻呼成功次数/寻呼请求次数。

寻呼请求次数:指MSC发出所有的PAGING消息的总次数。统计消息为“PAGINGREQUEST。不包含二次寻呼的次数。该指标在交换侧统计。

寻呼成功次数:指所有MSC收到的PAGING消息的响应总次数。统计消息为PAGINGRESPONSE。包含二次寻呼的响应。统计方法:选择VLR系统其他项目统计数据,取寻呼请求成功次数





9邻区优化

邻区配置是否合理直接影响系统的性能,包括小区之间的切换、切换比例,邻区设置不合理还会引起掉话。

初始邻区的设置不可能保证完全正确,而且无线网络拓扑结构、无线环境、用户行为等都是持续变化的,因此在基站开通之后,还需要根据实际的情况对邻区列表进行优化调整。

这需要结合OMC切换次数统计和网络拓扑结构、实际地形情况对邻区进行调整。

9.1邻区列表

无论终端是处于待机还是业务状态,都会维护一个邻区列表。移动台会按照循环的顺序搜索邻区列表中每个导频当前的强度,如果是超过T_ADD门限的,则加入候选集之中,并且发出PSMM给基站,启动一次切换。因此,处于邻区之外的导频,是很难切换成功的,除非在移动台偶尔搜索剩余集时被搜索到了。

另外后台中还存在一个邻接小区列表,邻区列表是它的一个子集。

9.2邻接小区

作用:主要用于基站侧的切换判决,相邻集和剩余集小区的搜索。手机搜索邻区的最大个数协

议规定上限为20个,为了最大程度的保证切换,在BSC侧引入邻接小区概念。手机上报上来的导频PN只要在小区的邻接小区中,BSC就有可能安排业务信道,指示移动台进行
切换。此外邻接小区也是用来区别导频复用的小区,准确定位实际切换的小区,保证性能统计的准确。

配置原则:
1、对于没有开通的基站,给出邻接小区配置;配置原则暂定将该基站周围二圈以内的 基站都先作为该基站的邻接小区;给出邻接小区的小区号、PN码。

2、对于已经开通的基站,通过后台邻区切换检查,将已发生的非邻接小区切换次数较 多的小区添加到邻接小区表中。

数量限制:一个BSC的所有小区最多可以配置的邻接小区的个数是512cell*40个邻接小区(N8m)。对于单个基站最好配置40个,但也要考虑实际的切换情况,可多可少,只要BSC下邻接小区个数不超过20480个就可以了。

9.3邻区列表配置原则

一个小区的某一载频下最多可以配置20个扇区作为其邻区。其配置原则如下:

1

对于新开通的基站,根据其位置,将扇区周围可能和它直接发生切换的小区添加到邻区列




表里面。

2、对于已经开通的基站,利用后台性能统计,将切换次数最多小区配置到邻区列表里面。邻区 列表最多可以配置20个邻区,配置时候到18个主要也是为扩容留有一定的余量。

3、邻区列表要求互配。

4、在做邻区配置时,B要求将A加为邻区,如果遇到A的邻区已经达到20个小区时,建议先查询“性能管理”看A邻区切换,统计出切换比较少的邻区且这个邻区和A是隔一个扇区切换的,这样可以删去这个邻区而添加B这个邻区。







10双载频换频切换

通常情况下,基本载频的网络覆盖范围大于第二载频的覆盖,当系统升级为双载频后,将出现第二载频向基本载频的换频切换。由于在双载频系统中,基本载频与第二载频的CE资源无法共享、手机在通话状态仅能搜索当前载频的导频信息,因此从第一载频向第二载频和第二载频向第一载频切换时涉及到换CE单元、换载频等资源切换;由于手机不能查看换频切换的目标载频的导频信息,因此换频切换为一种盲切换。为了提高换频切换的成功率,系统必须为手机提供换频切换的目标载频的导频信号的某种指示,确保手机发生换频切换时,目标载频的导频强度可以建立业务信道。

为了给即将发生换频切换手机提供目标载频的导频信息指示,不同的双载频实现方式采用不同的方法。一般,双载频的换频切换有两种实现方式:基于数据库方式的换频切换、伪导频方式的换频切换。

下面,针对不同方式的换频切换作一定的分析。

10.1数据库方式实现换频切换

网络中,所有基站共同的载频称为基本载频,另一个载频称为第二载频,与单载频基站相邻的两载频小区称为临界小区。当手机在临界区的第二载频上时,可能会向相邻的单载频基站移
动,由于相邻的单载频基站没有第二载频,必然会出现手机从第二载频切换到基本载频的临界区换频切换。由于手机只能搜索一个频点,因此在第二载频上无法看到相邻的单载频基站,无法自主发起切换,必须由基站通过以下算法来命令手机进行切换。

当手机进入临界小区,分配到第二载频的业务信道上,基站命令手机周期性上报导频强度测量消息,如果手机上报的所有激活导频的强度都小于某个门限时,基站命令手机切换到基本载频。此门限称为换频切换门限。

目前数据库方式的双载频换频切换分为两种:
(1)handdown:执行切换时建立的最多的四条leg中,包括本扇区的第一载频。

(2)handover:执行切换时建立的最多的四条leg中,不包括本扇区的第一载频。

因此我们在进行第二载频的邻区配置时,首先需要考虑周围同时存在的两载频基站,对于边界的两载频基站,还要考虑优选的邻区。

handdown的目的是强迫手机在离开临界小区前切换到基本载频,以使手机有足够的时间和距离在基本载频通过正常的软切换进入单载频基站。临界小区的基本载频不但要为基本载频的呼叫和切换提供容量,而且也要为第二载频切换来的业务提供足够的容量。某个基站之所以扩容成两载频,可能由于基本载频业务量过高,需要提供第二载频来增加容量。但是,handdown造成基本载频的业务量增加,从而在基本载频又产生过载。在两载频基站没有足够的基本载频容量来容纳切换的情况下,必须在此基站周围增加两载频区域,将切换操作转移到有足够基本载频容量的基站。通过两载



频区域的扩展,使临界小区有足够的基本载频容量来处理呼叫和切换。为了进行切换而增加的第二载频的小区称为过渡小区。从第二载频到基本载频的切换将发生在过渡小区中,而不是发生在负载大的中心小区。一般来说,只要第二载频切换来的业务使基本载频产生过载,都应增加过渡小区。

由于手机在第二载频无法看到第一载频的情况,handover的目标小区只能由人工预先设定。

因为手机最多同时能解调4个小区的信号,所以handover的目标小区最多只能设4个。当临界小区的单载频邻区超过4个时,则会出现较多的切换失败。因此‘handover的健壮性比handdown差,但 handover不会增加临界小区的基本载频负荷,所以不需要增加过渡小区。handover适合在以下情况使用:邻区较少、不允许增加过渡小区、切换次数较少以至于可以容忍较多的切换失败。

由于换频切换的带有一定的盲目性,换频切换的成功率低于软切换的成功率。如果条件允许不作换频切换且能保证通话质量的前提下,尽量避免发生换频切换。因此,对换频切换的发生有如下限制条件:
1) 没有要加入的腿;
2) 所有的腿都在临界小区中;
有效集中所有的腿的搜索窗中心〉T_RTD
3) 4) 有效集中强度小于门限T_Drop的腿数〈2
5) PSMM中所有的PN的强度都弱于门限T_DropSSH0(MS辅助换频半软切换门限)

10.2 伪导频方式实现换频切换

下建立业务信道,很大程度上节省设备成本,但无法分担话务量。 伪导频(PilotBeacon)是指基站仅有导频信号输出,无同步、寻呼和接入信道,也不在该载扇
下图为使用伪导频实现双载频网络中换频切换的组网方式。红色区为双载频区域,金色区域为伪导频区域,黄色为单载频区域。为了保证从双载频区域向伪导频区域移动时换频切换成功,应保证伪导频区域完全覆盖双载频区域的边界。

F1F2 分别表示两个载频
红色区是多载频区;



金色区是有一个伪导频的多载频区







黄色区F1是单载频区
通常将伪导频配置在从双载频到单载频的过渡区域,在这个过渡区,所有工作在F2上的用户均被切换到F1上,并且在这个过渡区内,不会有从F2起呼的用户(因为没有配置接入和寻呼信道)。这样,手机从过渡区到单载频区就可以做软切换,降低掉话率。

当工作在F2的手机从双载频区向过渡区移动时,手机可以同时搜索到本小区(多载频小区)和目标小区(F2为伪导频的小区)的导频强度,并上报给基站。当目标小区的导频强度很强时,基站指示手机向目标小区做软切换,但目标小区的F2是伪导频,不能建立业务信道,所以基站侧在F1上建立业务信道,从而发生换频切换。

10.3两种换频切换方式比较

从以上比较可以看出,数据库方式实现换频切换与伪导频方式实现换频切换既有相同点又有不同的方面。

相同点:

1.用于辅助手机作换频切换;

2.对于手机,两种换频切换方式都是盲切换,手机被动发起换频切换;

3. 换频切换区域的基本载频小与第二载频的覆盖无法保证相同,影响换频切换发生,导致换 频切换不成功。

1. 换频切换触发条件不同:数据库方式要求条件比较苛刻,必须同时满足多个条件才能发生 不同点:
换频切换;伪导频方式触发换频切换较简单,仅须候选集中伪导频信号强度足够强即可。 2. 邻区列表中用于换频切换的数目不同:从第三章讨论可以看出,数据库方式的换频切换的目
标小区最多为4个;一旦个别区域出现换频切换失败,必须调整优选邻区进行解决;但调整 优选邻区的同时又会带来新的换频切换问题区域。伪导频方式的换频切换的目标小区由其 地理位置所决定,与双载频基站存在邻区关系的伪导频都可以加入邻区列表,仅受邻区数 目限制。

3. 切换成功率不同:基于数据库方式的换频切换,手机报告导频强度测量报告,当基站发现 导频强度很弱时,就要指示手机向它的优选邻区做换频切换,这些优选邻区是在无线参数 中配置的,也就是说手机实际收到的这些优选邻区的导频强度基站是不知道的,完全是根 据数据库中记录的优选邻区来指示手机向目标导频做切换,一旦手机收到的目标的导频强 度很弱,就会发生掉话,换频切换失败。所以,这种换频切换是具有很大的盲目性,必须 在大量的测试基础上确定优选邻区。

采用伪导频方式的换频切换,当目标小区的导频强度很强时,基站指示手机向目标小区做 软切换,但目标小区的当前载频是伪导频,不能建立业务信道,所以基站侧在基本载频上

建立业务信道,从而发生换频切换。虽然,伪导频方式下发生换频切换时,基本载频的导频



强度也为未知值,但伪导频的导频强度与对应基本载频的导频强度有一定的可比性。伪导频19







方式的换频切换与数据库方式的盲切比较具有一定的目标性和准确性,只要保证伪导频与基

本载频的覆盖范围基本一致,就可以保证换频切换的成功率。







11常见网优问题分析

11.1越区覆盖问题

从邻区切换统计中还可看出一个站的覆盖范围是否过大。如果一个小区的切换小区数目与切换次数都很大的话,基本上可以认为这个站越区覆盖,这样会浪费掉系统的资源,增加软切换的资源占用,并且使得一些无法加入到邻区集的导频形成干扰。

对于邻区切换中与其它切换小区数量与次数较多的基站,前台测试确认其越区覆盖范围,进行控制,调整天馈与控制信道增益。

11.2搜索窗设置问题

搜索窗的大小与搜索速度成反比关系,扩大搜索窗口将增加移动台搜索处理的工作量,减少单位时间内搜索到的导频个数,缩小搜索窗口,移动中将无法搜索到窗口外的导频信号,基站无法识别,对系统形成干扰,造成掉话与其它通讯过程的问题。因此设置合适的搜索窗口大小是非常有必要的。

从下图中看出,儋州业务区的搜索窗的设置大小是多样的,但是都有一个共同点,就是SRCH_WIN_R全都开着,这就是说在搜索完了邻区列表中SRCH_WIN_ASRCH_WIN_N后还要去搜索不

对于搜索窗宽度有疑问的小区要在前台测试覆盖,在确定覆盖范围后再修改搜索窗的值,对于
在邻区列表中的导频,这在一个成熟的网络中是不必要的,而且会浪费系统资源。

市区与运行时间已经很久的基站小区,建议关闭SRCH_WIN_R

注:在一个成熟的网络中SRCH_WIN_R是不必要的,会浪费系统资源,需要把其关掉。

11.3影响话务掉话比指标的问题

那么是什么样的因素会导致这个指标的恶化呢。首先这个指标的定义为:话务掉话比=业务信道承载的话务量(不含切换)*60/业务信道掉话次数*100%。从这个公式我们可以看出,业务信道承载的话务量属于用户的行为,我们不能去操控它,所以只要可以控制好掉话的次数,那么就可以对这个指标的提升起到很好的效果。

要控制掉话,我们则首先需要去了解为什么会产生掉话。掉话主要是由于接收端,连续收到的误帧超过一定门限以后,接收端关闭发射机而造成的。而造成这种产生连续误帧的原因主要有以下

这些:




弱覆盖


干扰问题

邻小区丢失

导频污染





前反向链路不平衡

系统参数设置的不合理

系统资源问题

切换问题

直放站问题

设备硬件的问题

终端问题由于造成掉话的原因可能性比较多,所以这也给我们的判断上带来了一定的麻

烦,因此我们在

判断掉话原因的时候,一定要全面的考虑问题,结合前后台的数据逐一进行排查。

11.4基站资源拥塞问题

通常基站资源拥塞主要包括CE拥塞、功率过载等方面,它导致手机呼叫失败、切换失败、掉

话等问题。如果主叫设置了自动重拨功能,会出现手机自动重拨多次才成功的情况;否则,接入后

会马上中断。对于被叫,即使能寻呼到,但因为基站没有足够资源,所以会造成呼叫失败,主叫一

般会听到“暂时无法接通”语音。对于通话中的用户,如果基站没有足够的资源,会引起切换失败

原因。
进而可能掉话。从后台呼叫性能数据统计中主要表现为“呼叫中CE 不足、功率过载”等呼叫失败

数据库接口失败”等呼叫失败。
此外,资源拥塞同时还会引起其它呼叫问题,如:在拥塞过重的基站,会引起“调用接入切换

通过海南各BSCOMC统计发现有很多基站CE利用率超过75%,甚至到了100%,出现不同程

度的拥塞。CE资源不足会导致呼叫失败,数据业务速率低等问题,考虑扩容需要一定的周期,建议

尽快考虑对这些站点的信道资源进行扩容。

优化建议:对出现CE资源不足、拥塞的小区,建议增加信道板进行扩容。



显示全文