您的当前位置:首页正文

Natural Genetic Variation in Selected Populations of Arabidopsis thaliana Is Associated

2020-06-03 来源:赴品旅游
NaturalGeneticVariationinSelectedPopulationsofArabidopsisthalianaIsAssociatedwithIonomicDifferences

ElizabethBuescher1,TilmanAchberger2,IdrisAmusan1,AnthonyGiannini3,CherieOchsenfeld2,AnaRus4,BrettLahner4,OwenHoekenga5,ElenaYakubova4,JeffreyF.Harper6,MaryLouGuerinot7,MinZhang2,DavidE.Salt4,IvanR.Baxter4,8*

1DepartmentofAgronomy,PurdueUniversity,WestLafayette,Indiana,UnitedStatesofAmerica,2DepartmentofStatistics,PurdueUniversity,WestLafayette,Indiana,UnitedStatesofAmerica,3DepartmentofAnimalSciences,PurdueUniversity,WestLafayette,Indiana,UnitedStatesofAmerica,4CenterforPlantEnvironmentalStressPhysiology,PurdueUniversity,WestLafayette,Indiana,UnitedStatesofAmerica,5RobertW.HolleyCenterforAgricultureandHealth,UnitedStatesDepartmentofAgriculture-AgriculturalResearchService,CornellUniversity,Ithaca,NewYork,UnitedStatesofAmerica,6UniversityofNevada,Reno,Reno,Nevada,UnitedStatesofAmerica,7DepartmentofBiologicalSciences,DartmouthCollege,Hanover,NewHampshire,UnitedStatesofAmerica,8PlantGeneticsResearchUnit,UnitedStatesDepartmentofAgriculture-AgriculturalResearchService,DonaldDanforthPlantSciencesCenter,St.Louis,Missouri,UnitedStatesofAmerica

Abstract

Controllingelementalcompositioniscriticalforplantgrowthanddevelopmentaswellasthenutritionofhumanswhoutilizeplantsforfood.Uncoveringthegeneticarchitectureunderlyingmineralionhomeostasisinplantsisacriticalfirststeptowardsunderstandingthebiochemicalnetworksthatregulateaplant’selementalcomposition(ionome).NaturalaccessionsofArabidopsisthalianaprovidearichsourceofgeneticdiversitythatleadstophenotypicdifferences.Weanalyzedtheconcentrationsof17differentelementsin12A.thalianaaccessionsandthreerecombinantinbredline(RIL)populationsgrowninseveraldifferentenvironmentsusinghigh-throughputinductivelycoupledplasma-massspectroscopy(ICP-MS).SignificantdifferencesweredetectedbetweentheaccessionsformostelementsandweidentifiedoverahundredQTLsforelementalaccumulationintheRILpopulations.AlteringtheenvironmenttheplantsweregrowninhadastrongeffectonthecorrelationsbetweendifferentelementsandtheQTLscontrollingelementalaccumulation.Allionomicdatapresentedispubliclyavailableatwww.ionomicshub.org.

Citation:BuescherE,AchbergerT,AmusanI,GianniniA,OchsenfeldC,etal.(2010)NaturalGeneticVariationinSelectedPopulationsofArabidopsisthalianaIsAssociatedwithIonomicDifferences.PLoSONE5(6):e11081.doi:10.1371/journal.pone.0011081˚,Sweden¨rK.Ingvarsson,UniversityofUmeaEditor:Pa

ReceivedJanuary27,2010;AcceptedMay7,2010;PublishedJune14,2010

Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsPublicDomaindeclarationwhichstipulatesthat,onceplacedinthepublic

domain,thisworkmaybefreelyreproduced,distributed,transmitted,modified,builtupon,orotherwiseusedbyanyoneforanylawfulpurpose.

Funding:ThisprojectwasfundedbyagrantfromtheNSFPlantGenomeResearchProgram(DBI-0077378)awardedtoMaryLouGuerinot,DavidEide,JeffHarper,DavidE.Salt,JulianSchroederandJohnWard,NSFArabidopsis2010program(IOS-0419695)awardedtoMaryLouGuerinot,JeffHarper,DavidE.Salt,JulianSchroederandJohnWard,NationalInstitutesofHealth,theNationalInstituteofGeneralMedicine(R01GM78536-01A1)awardedtoDavidE.Salt,MaryLouGuerinotandIvanBaxterandtheIndiana21stCenturyResearchandTechnologyFund(912010479)toDavidE.Salt.OwenHoekengawassupportedbytheNSFPlantGenomeResearchProgram(DBI-0419435)awardedtoLeonKochian,EdwardBuckler,OwenHoekengaandJocelynRose.Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthemanuscript.CompetingInterests:Theauthorshavedeclaredthatnocompetinginterestsexist.*E-mail:ibaxter@danforthcenter.org

Introduction

Geneticvariationoccurringamongandwithinnaturalpopu-lationsofArabidopsisthalianacanbeusedasatoolforgenediscovery[1–3].A.thalianahasawide-geographicdistribution,producingalargeanddiversegroupofnaturalpopulations,manyofwhichhavebeencollectedasaccessionsthatarecuratedbytheArabidopsisBiologicalResourceCenter(ABRC).Considerablevariationforsuchtraitsasresistancetobioticandabioticstress,development,andmetabolismhasbeendescribed(forrecentreviewssee[3,4]).Observedvariationbetweenaccessionscanbequalitative,definedbyphenotypicdistributionsthatfallintodiscreteclasses,andiscausedbyoneortwomajorloci.Variationcanalsobequantitative,definedbyacontinuousphenotypicdistribution,causedbythecombinedeffectofmultipleloci.Experimentalpopulationsizeplaysamajorroleinthethresholdfordetectionofloci.Smallpopulationsareusefulforidentifyinglociifatraitiscontrolledbyafewlociwithlargephenotypiceffect;

PLoSONE|www.plosone.org

1

however,morecomplextraitscontrolledbymultiplelociwithrelativelysmallphenotypiceffectwillrequirelargeexperimentalpopulations.

Byusingimmortalizedmappingpopulationsknownasrecom-binantinbredlines(RIL),derivedfromavarietyofaccessions,quantitativetraitloci(QTL)havebeenidentifiedfornumerousimportanttraitsrelatedtotheionome[5].Theseincludephosphateaccumulationinseedandshoot[6],nitrogen(N)useefficiency[7,8],aluminum(Al)resistance[9–11],shootcesium(Cs)accumulation[12]andshootselenateaccumulation[13,14].OnceQTLsfortraitsofinteresthavebeenidentified,thegenomictoolsavailableforA.thalianacanbeusedtolocatethegenesthatunderlietheseQTLsandthusdescribethetraitsatamolecularlevel(forareviewsee[15]).SuchanapproachwasrecentlytakeninourlaboratoriestoidentifyAtHKT1,whichencodesaNa-transporter,asthegeneresponsibleforaQTLthatcontrolselevatedNaintwodistinctnaturalaccessionsTsu-1andTs-1[16],AtMOT1,aputativeMotransporterasthegeneresponsibleforan

June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

,80%decreaseinMoaccumulationin7accessions[17]andFPN2,anFeandCotransporterasthegeneresponsibleforincreasedCoin6accessions[18].

AlthoughmanystudieshaveexaminedthegeneticbasisthatcontrolstheaccumulationofsingleelementsinaRILpopulation,onlyasmallnumber[19–21]haveexaminedmultipleelementsinmultiplepopulationstoinvestigatethegeneticarchitectureoftheionome.WehavepreviouslyshownthatphysiologicalresponsestolowFeandPgrowthconditionscauserobust5and6elementsignatures,respectively,inA.thaliana[22],demonstratingthatsingleelementexaminationsofapopulationcannotgiveanaccuratepictureoftheplantionome.Geneticvariationintheresponsetotheseandotherenvironmentalchangesarelikelytoaltertheseelement-to-elementrelationships,leadingtogene6environment6ionomeinteractions.Inthisstudy,weanalyzedasmalldiversitypanelofnaturalaccessionsandthreeRILpopulations.Weshowthatsignificantvariationexistsintheshootandtheseedionomesof12A.thalianaaccessionsacrossdifferentenvironments.TheRILpopulations[Bay-06Shadahara(BaySha),Col-46Ler-0(ColLer)andCvi-06Ler-2(CviLer)]weregrownunderavarietyofenvironmentalconditions(highvs.lowFe)andpopulationsizes.Between17and19elementsweremeasuredforeachpopulation,withbothmacro-andmicroele-mentsrepresented.WedemonstratethatthisvariationiscontrolledbybothMendelianandquantitativetraitloci,andthatalteringtheenvironmenthasalargeeffectonwhichlocicontributetotheobserveddifferences.

Table1.ShootandseedionomeofA.thalianaCol-0.

2Element1Shoot

Seed3AverageLiBNaMgPKCaMnFeCoNiCuZnAsSeMoCd

12SD2.939.75217.8429009004700290012.947.620.160.260.7214.241.959.030.810.25

Lineeffect4yesyesyesnoyesyesyesyesyesyesyesyesyesnonoyesno

Average0.876.8464.823283993710690564532.4942.520.270.361.6758.651.3411.711.010.36

SD0.512.114.63614157823195515.4918.570.150.141.1414.420.485.740.410.11

Lineeffectnoyesyesyesnonononoyesnoyesnoyesnonoyesyes

11.8343.88860.14129009700461004500063.59100.631.861.411.8261.061.049.35.522.03

Results

VariationintheshootionomeofArabidopsisthalianaaccessions

TheconcentrationofvariouselementsinhealthyA.thalianashoottissuefromCol-0variesover4ordersofmagnitudedependingontheelementanditsbiologicalfunction(Table1).MacronutrientssuchasMg,P,KandCaaccumulatemorethan9,500mgg21oftheshootdryweight,whereasmicronutrientssuchasB,Mn,Fe,Co,Ni,Cu,ZnandMorangeinconcentrationfrom1–100mgg21.Non-essential,potentiallytoxictraceelementssuchasAs,Se,andCdcanaccumulatetobetween1–10mgg21withoutanyvisiblesymptomsoftoxicity.AnANOVAanalysisoftheaccumulationinthe12accessionsrevealsthatvariationin13ofthe17elementsmeasuredareundergeneticcontrolwithinthepopulation(Table1,Table2,TableS1A).Severalelementsshowedlargevariationbetweenthelowestandhighestaccumu-latingaccessions(Table2).Moshowedthemostvariationwith44significantpairwisedifferencesbetweenaccessions(TableS1).SinceCol-0isthereferenceaccessionandaparentofmanyoftheavailableRILpopulations,wehavealsoincludedatableofelementaldifferencescomparedwithCol-0(Table2).

Allelementspresentedasmgg21.

Datarepresentstheaverage(n=60exceptforLin=30),individualplantsharvestedandanalyzedin3–6separateexperiments.3Datarepresentstheaverage(n=12)ofindividualsamplesfromseedpooledfrom4plantssubsampled3timeseachandanalyzedin2separateexperiments.4ColumnindicatesifthelineeffectissignificantintheANOVA.doi:10.1371/journal.pone.0011081.t001

accessionsintheseedmirrorthedifferencesobservedbetweentheaccessionsintheleaves,however,therearemultiplecomparisonsinwhichsignificantdifferencesintheleavesarenotreflectedintheseed(andviceversa).Forexample,theelevatedshootNaobservedinTs-1isalsoreflectedintheseed,withTs-1showinga161%increaseinseedNacomparedtoCol-0(Table2and3),whiletheotherhighshootNaaccession,Tsu-1doesnotaccumulatesignificantlydifferentamountsofNainitsseedscomparedtoCol-0(Table3).

IdentificationofQTLscontrollingionomicdifferencesinthreeRecombinantInbredPopulations

Toexpandonthegeneticcharacterizationoftheionome,weanalyzedtheelementalcompositionof3RILpopulations:Bay-06Shadahara(BaySha),Col-46Ler-0(ColLer)andCvi-06Ler-2(CviLer).BayShaandCviLerweregrownintwodifferentenvironments(twogrowthmediawithdifferingingredients)foratotalof5differentexperiments.TheexperimentsdifferedinthenumberofRILlinesanalyzed(from93forColLerto411forthesecondBayShaexperiment)andthenumberofplantsanalyzedperline(1–3).TheparentsoftheRILpopulationshowedsignificantdifferencesin53outofthepossible87instances(17elements65populations+SandRbmeasuredinthesecondBayShaexperiment).Weidentified218QTLsinthefiveexperimentsalthoughasignificantnumberarelikelythesameQTLfoundintwoexperimentsofthesamepopulationorareduetothesharedLerparentofCviLerandColLerpopulations(Tables4and5,TableS2).158ofthe218QTLs(72%)werefoundforelementsforwhichtheparentshadasignificant

2

June2010|Volume5|Issue6|e11081

VariationintheseedionomeofArabidopsisthalianaaccessions

TheconcentrationofelementsmeasuredinA.thalianaseedvariesover4ordersofmagnitude,asimilarscaletothatobservedinshoots(Table1).However,thereareseveralsignificantdifferencesbetweentheshootandseedionome,withcertainelementsbeingenrichedorreducedrelativetootherelements.Forexample,onamgg21dryweightbasis,Pdoesnotchangeconcentrationsfromseedtoshoot,butKisapproximately4-foldlowerintheseeds(Table1).Furthermore,ANOVAanalysisoftheelementalcompositionofseedsfromdifferentA.thalianaaccessionsshowedsignificantgeneticcontrolfor8ofthe17elements(Table1,Table3,TableS1).Severalsignificantdifferencesbetween

PLoSONE|www.plosone.org

Nat.IonomicVar.inArab.

Table2.ShootionomevariationacrossA.thalianaecotypescomparedtoCol-0.

NameAcc.#

BNaMgPKCaMnFeCoNiCuZnAsSeMoCd

%differencefromcol-0Cvi-0Est-1Kas-1Mrk-0Mt-0Se-0Ts-1Van-0Ws-0Nd-1Tsu-1Ler-2

CapeVerdiIslandsEastland,RussiaKashmir,IndiaMarktBaden,GermanyMartubaCyrenaika,LibyaSanEleno,SpainTossadelMar,SpainVancouver,CanadaWassilewskija,RussiaNiederzenz,GermanyTsu,Japan

109611501264137413801502155215841602163616408581

127

219

23189

2320

21

272326

2116

273

117

25

1653

45

12

234

232

27

3656

282321419

7342

276281226219

222

2317

2737

22415

24

233

259226227228

224

46

225

AllelementvaluesareinpercentdifferencefromCol-0withdatarepresentingthesignificant(studentt-testP,0.01)averagedifferenceacross2independentexperiments(n=10individualplantsperexperiment).doi:10.1371/journal.pone.0011081.t002

difference,foranaverageof3.0QTLs/elementwhileelementsinwhichtheparentswerenotsignificantlydifferentaveraged1.8QTLs(Tables4and5).Allofthe19major(r2.20%)QTLsweidentifiedcamefromelementsinwhichtheparentsweresignificantlydifferent(Tables4and5,TableS2).FrequencydistributionsshowingdifferencebetweenparentallinesareprovidedinsupplementalFilesS1,S2,S3,S4,S5.ToevaluatetheeffectofdifferentexperimentaldesignsontheabilitytoidentifyQTLsforionomictraits,wecreatedsubsetsofthelargeBayShaexperiment(411linesatn=2,,800samples)andthelargeCviLerexperiment(165linesatn=3).Randomlygeneratedn=1andn=2subsetsoftheCviLerdataidentified69%and95%asmanyQTLsrespectivelyasthen=3datafromwhichtheywerederived.Whendatafromthe165linesusedinthesmallBayShaexperimentwasextractedfromthelargeBaySha411line

experiment,20%fewerQTLswereidentified,suggestingthatthedifferentnumbersofQTLsidentifiedbetweenthelargeandsmallBayShaexperimentsisduetothechangeinthenumberoflines.

TransgressiveSegregationandEpistasis

Wetestedfortransgressivesegregationusingtwoindependentmethods:thenumberofRILswhichweresignificantlyhigherorlowerthantheparentsgrowninthesametraysorhavingtwoQTLswithoppositealleliceffects.Forelementsinwhichtherewasnotasignificantdifferencebetweentheparents,thepercentageofRILsthatfelloutsidetherangeoftheparentsrangedfrom10%–41%(Tables4and5,FilesS1,S2,S3,S4,S5).ThelikelihoodoffindingtransgressivesegregationbytheoppositealleliceffectstestincreasedasthenumberofQTLsincreased:transgressive

Table3.SeedionomevariationacrossA.thalianaecotypescomparedtoCol-0.

Name

Acc.#Li

BNaMgPKCaMnFeCoNiCuZnAsSeMoCd

%differencefromcol-0Cvi-0Est-1Kas-1Mrk-0Mt-0Ee-0Ts-1Van-0Ws-0Nd-1Tsu-1Ler-2

CapeVerdiIslandsEastland,RussiaKashmir,IndiaMarktBaden,GermanyMartubaCyrenaika,LibyaSanEleno,SpainTossadelMar,SpainVancouver,CanadaWassilewskija,RussiaNiederzenz,GermanyTsu,Japan

109611501264137413801502155215841602163616408581

204

76

212

234

212

69

258

161

2482582825392275

309

72

258

254

55

283243

223

27

69

AllelementvaluesareinpercentdifferencefromCol-0withdatarepresentingthesignificant(studentt-testP,0.01)averagedifferenceacross2independentexperiments(n=10individualplantsperexperiment).doi:10.1371/journal.pone.0011081.t003

PLoSONE|www.plosone.org3June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

Table4.AllQTLsforeachelementintheColLerandBayShaRILpopulations.

ColLer(93lines,n=3)SunshineSoil,LowFe

Herit-HiloRILTrans-p-valueabilityspercadiffbQTLsLiB

1.8E-035.7E-09

44%57%51%52%63%NA61%51%53%50%47%54%38%49%98%51%NA66%53%

16%4%24%16%25%NA21%16%4%3%19%15%23%14%24%29%NA4%20%

NNNNNNAYNNNNNNNNANNANN

01001NA20010100NA0NA23

BayShaSmall(165lines,n=3)SunshineSoil,HighFe

Herit-HiloRILTrans-Majorcp-valueabilityspercadiffbQTLs00000NA00000000NA0NA00

NANA5.5E-101.5E-122.9E-14NA1.8E-151.2E-15NANA7.6E-111.9E-04NA1.5E-03NA1.7E-03NA5.0E-363.3E-06

46%40%79%62%66%NA72%59%43%42%47%39%42%47%55%55%NA80%46%

10%18%47%9%10%NA17%2%15%7%7%8%10%10%21%47%NA2%9%

NYYYYNAYYNNNNYYNYNANN

23227NA8321105603NA21

Majorc00110NA1100000002NA10

BayShaFull(411lines,n=2)PromixSoil,HighFe

Hertit-HiloRILTrans-p-valueabilityspercadiffbQTLsNA4.2E-044.9E-113.2E-153.1E-341.8E-151.7E-422.2E-291.3E-102.3E-07NA3.0E-074.4E-065.4E-09NANA1.8E-357.9E-492.7E-08

55%63%79%70%73%86%75%72%60%66%61%60%63%57%54%57%71%80%53%

17%24%42%21%13%38%15%22%23%26%34%13%19%13%18%11%8%3%10%

NYYYYYYYYYYNYYNYYNN

1376987453423515721

Majorc0011021101000000110

NaNAMg6.1E-08PSKCa

2.0E-14NANANA

Mn3.8E-18Fe

9.3E-11

CoNANi

NA

CuNAZnAsSe

2.7E-03NANA

RbNAMo1.5E-16CdNA

PopulationsizeandreplicatenumberareincludedwitheachRILaswellasenvironment.aTransgressivesegregationasmeasuredbythepercentageofRILssignificantlyoutsideoftherangeoftheparents.bTransgressivesegregationdeterminedbythepresenceofQTLswithdifferentdirectionsoftheadditiveeffect.cMajorQTLwithR2value.0.20.

doi:10.1371/journal.pone.0011081.t004

segregationoccurredin14of19elementsinthelarge(411line)BayShaexperiment(83QTLs),noneoftheelementsintheColLerexperiment(11QTLs)andonlytwooftheelementsinthefirstCviLerexperiment(28QTLs)(Tables4and5).EpistaticinteractionsbetweentheidentifiedQTLswereexaminedusingRQTLinthelargeBayShapopulationandtheCviLerpopulationexperiments.Onlyfivesignificant(p,0.01)interactionswerefoundamongthe53(17+17+19)elementsexamined,noneofwhichwerefoundinthe411line(large)BayShapopulationwiththemostpowertodetectepistaticinteractions(TableS3).

EnvironmentalEffectonElementCorrelationsandQTLDiscovery

Alterationsintheenvironmentorphysiologyofaplantcanaffecttheaccumulationofmultipleelementssimultaneously.VariationinmineraluptakeindifferentenvironmentshasbeendescribedinA.thaliana[19,21,23]andSilenevulgaris[24].Theclearestexampleoftheeffectoftheenvironmentwasobservedintherelationshipsbetweenelementswithinagivenexperiment.WemeasuredthecorrelationbetweeneachpairwisecombinationofelementsfromeveryRILineachofthefivepopulations(Figure1).Whilemanyelementsweresignificantlycorrelatedwithineachofthefiveexperiments,onlythreepairsofelementswerecorrelatedineverypopulation6environmentweanalyzed:Li-Na,Mg-Ca,andCu-Zn,althoughLi-As,Li-Cd,Li-K,Li-Zn,P-Fe,Mg-ZnandZn-Cdwerefoundin4ofthe5experiments(Figure1).

PLoSONE|www.plosone.org

4

TheBayShaandCviLerpopulationswereeachgrownintwodifferentgrowthmediaenvironments.Mostofthesignificantelementalcorrelations(68of85totalcorrelationsinBayShaand66of76totalcorrelationsinCviLer)werefoundinonlyoneoftheenvironments(Figure1).TheCa-MocorrelationwasuniquetotheBayShapopulationandwasfoundinbothenvironments.ThereisathreeelementcorrelatednetworkthatonlyappearsinSunshinegrowthmediumwithsufficientFe,Co-CdispositivelycorrelatedwhilebotharenegativelycorrelatedtoCu(Cu-CdisnotsignificantinCviLer)(Figure1).Interestingly,intheBayShaPromixexperiment,Co-Cuisalsonegativelycorrelated,butCu-Cdispositivelycorrelated.EightothercorrelationsweresharedbetweenthethreepopulationsgrowninsufficientFeSunshinegrowthmedium.IntheFesufficientSunshinegrowthmedium,BayShashared18and22correlationswithCviLerandColLer,respectively(Figure1).WhenthePromixgrownBayShapopulationwascomparedwithsufficientFeSunshineCviLerandColLerpopulations,only8and11sharedcorrelationswereidentified(Figure1).

ComparisonofQTLsacrossenvironments

Totestwhetheralteringtheenvironmentalteredwhichgeneticlocicontroltheionome,wecomparedtheQTLsidentifiedforeachelementinthefiveexperiments.TheonlycommonQTLamongthefivepopulations,regardlessofenvironment,popula-tionsizeorgeneticbackground,istheMoQTLonchromosometwocorrespondingtotheMOT1locus[25].Intheanalysisofthe

June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

Table5.AllQTLsforeachelementintheCviLerRILpopulations.

CviLerLow(151lines,n=1)SunshineSoil,LowFep-value

LiBNaMgPSKCaMnFeCoNiCuZnAsSeRbMoCd

5.7E-05NA1.4E-083.3E-041.5E-05NANANA2.4E-07NANANANANANANANA8.2E-087.3E-05

Herit-abilityNANANANANANANANANANANANANANANANANANANA

HiloRILsperca21%27%13%24%39%NA25%34%11%28%19%23%21%15%26%38%NA9%13%

Trans-diffbNNYNNNAYNNNNNNNNNNANN

QTLs13113NA2132101302NA31

Majorc00100NA0000000000NA10

CviLerHigh(161lines,n=3)SunshineSoil,HighFep-value2.2E-045.1E-162.7E-111.9E-311.4E-46NA7.0E-191.0E-29NA7.2E-05NA2.2E-03NANA6.1E-11NANA1.0E-291.2E-08

HiloRIL

Herit-abilitysperca52%70%48%59%78%NA57%56%68%51%47%45%37%63%54%53%NA81%56%

34%25%7%6%2%NA12%6%40%13%12%24%15%41%9%13%NA4%11%

Trans-diffbQTLsYYYYYNANNYNNNNYNNNANN

27455NA3162103500NA22

Majorc11001NA0000000000NA10

PopulationsizeandreplicatenumberareincludedwitheachRILaswellasenvironment.aTransgressivesegregationasmeasuredbythepercentageofRILssignificantlyoutsideoftherangeoftheparents.bTransgressivesegregationdeterminedbythepresenceofQTLswithdifferentdirectionsoftheadditiveeffect.cMajorQTLwithR2value.0.20.

doi:10.1371/journal.pone.0011081.t005

parentsgrownwiththeCviLerpopulation,sevenoftheelementsmeasured,Li,Na,Mg,P,Ca,MoandCd,weresignificantlydifferentinbothgrowthconditions,threewerenotsignificantlydifferentineithercondition,andsevenelementswereonlysignificantinonecondition(Tables4and5,TableS2).Fortheelementsthatweresignificantlydifferentintheparentsinbothconditions,4ofthe7QTLswerefoundinbothconditions(Tables4and5,Figure2,TableS2).IntheanalysisoftheparentsgrownwiththeBayShapopulations,nineoftheelementsmeasured,Na,Mg,P,K,Ca,Ni,Zn,MoandCd,weresignificantlydifferentinbothgrowingconditions,twowerenotsignificantlydifferentineithercondition,andeightelementsweresignificantlydifferentinonlyonecondition(Tables4and5,TableS2).OfthenineelementsinbothBayShapopulationsthatweresignificantlydifferentintheparents,20of54QTLswerefoundinbothgrowingconditions(Tables4and5,Figure2,TableS2).

ComparingQTLsfromtheColLerandCviLerpopulationsgrowninsufficientFeSunshinegrowthmedium,weidentifiedfourcommonQTLs(Figure2,TableS2).However,onlyoneofthoseQTL(Mo)wassharedwiththeBayShapopulationgrowninthesamemedium.WhencomparingtheBayShapopulationswithColLer,threeofthe11ColLerQTLsappeartobeinsimilarlocations(Figure2,TableS2).TheCviLerpopulationsgrownindifferentenvironmentssharefourcommonQTLs(Figure2)andtheBayShapopulationsshare25QTLs(Figure2,TableS2).

PLoSONE|www.plosone.org

5

Discussion

NaturalvariationintheA.thalianashootandseedionome

IdentificationofvariationinelementalaccumulationamongA.thalianaaccessionsprovidesanexcellentstartingpointforidentifyinggenesimportantforregulationoftheplantionome,andforunderstandinghowtheionomerespondstodifferentgrowthconditionsandstresses.AlloftheA.thalianaaccessionsprofiledinthisstudyhadatleastoneelementthatwassignificantlydifferent(p,0.01)fromtheCol-0referenceaccession.Severalaccessions,forexampleEst-1andNd-1,hadnosignificantdifferencesinelementalaccumulationbetweenthem,eventhoughtheywerecollectedfromgeographicallydistantsites[26].Oneexplanationisthattheyareadaptedtosoilswithsimilarmineralcontents.Unfortunately,welackinformationonthetypeofsoilfromwhichmostoftheseaccessionswerecollected.TheionomicsignatureofCviismarkedlydifferentfromthatofalltheotheraccessionsinthisstudy.ThelargedifferenceinionomicprofilesbetweenCviandtheotheraccessionsismirroredinthegeneticdistanceofCvifromotheraccessionsasshownbygenome-scaleanalysisofsequencepolymorphisms[26].Thevariationobservedintheaccumulationofmostelementsbetweenshootsandseedsmaybeattributedtothelargedifferencesinthebiochemicalandphysiologicalfunctionsofthesetissues.Forthisreason,itismoreappropriatetofocusonelement-to-elementandaccession-to-accessioncomparisonswhencontrast-ingtheseedandshootionomes.Phosphorusisthefourthmost

June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

Figure1.Elementalcorrelationsforthe5RILpopulations.Solidlinesrepresentapositivecorrelationvalue.Dashedlinesrepresentnegativecorrelationvalues.Thickersolidanddashedlinesindicatecorrelations.0.5or,20.5,respectively.ColLer,CviLerhighFe,andBayShasmallwereallgrowninFe-sufficientSunshinegrowthmedium.TheotherCviLerpopulationwasgrowninSunshinegrowthmediumwithlowFewatering,whiletheLargeBayShapopulationwasgrowninPromixgrowthmedium.doi:10.1371/journal.pone.0011081.g001

abundantelementintheshoots,butthesecondhighest(andwithin10%ofK)intheseeds,likelyreflectingtheroleofthePcontainingmoleculephytateastheanioninstoragecrystalsforcationslikeCa,K,Mg,MnandZn[27].ComparisonoftheseedNaaccumulationofthethreehighshootNaaccessionssuggestsanactivemechanismtoeithertransportNatotheseedinTs-1orexcludeNafromtheseedinWs-0andTsu-1.Ofthe8accessionsthathaveshootMolevelsthataresignificantlydifferentfromCol-0,5showsimilardifferencesintheseedionome,whileNd-1haslowerMointheshoots,buthigherMointheseedsandtheremainingtwolinesarenotsignificantlydifferentintheseeds.Thewidedisparityinionomicsignaturesofeachaccessioninseedsandshootssuggeststhatthemechanismsgoverningelementalaccu-mulationaredistinctinthesetissues.WatersandGrusak[28]demonstratedthatbothremobilizationfromtheleavesandcontinuedsupplyfromtherootscouldcontributetoseedmineralloadinginCol-0,Cvi-0andLer-0,suggestingmultiplecontrolpointsinwhichnaturalvariationcouldhavedifferenteffectsontheseedandleafionomes.Sinceconductingthisscreen,wehaveidentifiedseveralofthegenesunderlyingthevariationdetectedintheleavesofthe12accessions.WeidentifiedHKT1,encodingaNa-transporter,asthegeneunderlyingtheQTLresponsibleforelevatedshootNainbothTsu-1andTs-1[16],MOT1,aputativeMotransporter,asthegeneunderlyingthelowMoinLer-2,Ws-0andVan-0[17]andFPN2,anFeandCotransporterasthegeneresponsibleforincreasedCoinTs-1andSe-0[18].

Gene6Environment6IonomeInteractions

Wedetectedastronginteractionbetweentheenvironmentandthegeneticcontroloftheionomeinouranalysisofelement-to-PLoSONE|www.plosone.org

6

elementgeneticcorrelationsandcomparisonsofQTLsdetectedinthesamepopulationindifferentenvironments.Twooftherobustgeneticcorrelationsidentifiedinall5experiments(Mg-CaandCu-Zn)havebeenidentifiedbyotherresearchersinavarietyofspeciesandenvironments[28–34].Thethreerobustlycorrelatedpairsofelements(Li-Na,Mg-CaandCu-Zn)havesimilarchemicalproperties,suggestingthatsharedbiochemicalaccumu-lationpathwaysaccountsfortheobservedcorrelation.Manyoftheothersignificantcorrelationsthatwedetectedwerespecifictoagivengrowthmedium,RILpopulationorcombinationofboth.Thissuggeststhatmanyoftheserelationshipsarenottheresultofaspecificpathwayforaccumulatingtheseelements,butareindirecteffectsofchangesinthebiochemistryorphysiologyoftheplantsinresponsetodifferentenvironmentalconditionssuchastheresponsestolowFeandPidentifiedbyBaxteretal.[22].Inagreementwiththishypothesis,wealsoobservedalargenumberofenvironment-specificQTLs.ForexampleintheCviLerpopulationgrowninhighandlowFeconditions,thelargesteffectQTLweobservedwasforPintheFesufficientconditions,whichexplained33%ofthevariance(TableS2).SmallereffectQTLsforLi,KandFewereobservedatthesamelocation.Interestingly,noneoftheQTLswereobservedwhentheRILpopulationwasgrownunderlowFeconditions,whichcorrespondswiththelossofanydifferencebetweenCvi-1andLer-2parentinP,KandFe,andthecorrelationsbetweenLi-Fe,Li-KandP-KunderlowFe.IthaspreviouslybeenobservedthatPstatusregulatesFestatus,withhighPreducingFeaccumulationandincreasingexpressionofIRT1encodingtheprimaryrootFe-transporter[35,36].ItispossiblethattheseresponsesareattributedtoreducedFebioavailabilityinthegrowthmediumcausedbyelevatedPdrivingtheprecipitationofFeasFe-phosphate[37].Wealsoobserveda

June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

Figure2.ChromosomemapswithQTLnotedforeachelementinwhichQTLwereidentified.ThewhitecirclewithinthecolorfulboxesrepresentstheestimatedlocationoftheQTL.A.QTLidentifiedinRILColLer.B.QTLidentifiedinRILBaySha,Sunshinegrowthmedium.C.QTLidentifiedinRILBaySha,Promixgrowthmedium.D.QTLidentifiedinRILCviLer,highFeenvironment.E.QTLidentifiedinRILCviLer,lowFeenvironment.

doi:10.1371/journal.pone.0011081.g002

setofco-localizedQTLsonchromosomeoneandcorrespondingsignificantelementcorrelationsintheBayShapopulation:Mg,KandCahadQTLsinbothenvironments,whiletheFeQTLandMg-FeandCa-Fecorrelations,wereonlyfoundinthelargeBaySha,Promixgrowthmediumexperiment.Ghandilyanetal.[19]reportedsimilarphenomena,observingthatQTLsidentifiedformultipleelementsacrosspopulationswerecontingentonenvironmentandtypeoforgan(ieseedortissue)thetraitwasmeasured,whileWatersandGrusak[20]observedthatalargenumberofQTLsforseedelementalaccumulationintheColLerpopulationwerenotdetectedinallexperimentsconductedoveraperiodofyears.

ImplicationsofExperimentdesignandParentDifferencesforQTLDiscovery

AstheQTLstudiesreportedhererequiredaconsiderableamountofeffortandresources,weinvestigatedseveraldifferentexperimentaldesignstooptimizeQTLdiscoverywhilelimitingthenumberofsamplesanalyzed.Whilewediddetectsometransgressivesegregation,findingRILpopulationsinwhichtheparentsaredifferentfortheelementofinterestisclearlythebestwaytoidentifyQTLscontrollingaspecificelement.Acrossallexperiments,majorQTL(s),whicharemucheasiertofinemap,werefarmorelikelytobefoundwhentheparentsweresignificantlydifferentforthatelement.TheIonomicshubdatabase(www.ionomicshub.org)nowhasdatafor.350accessions,

PLoSONE|www.plosone.org

7

includingmostavailableRILpopulationparentsandisanexcellentresourceforfindingaccessionpairswhichdifferforagivenelement.Reducingthenumberofreplicatesfrom3to2intheCviLerpopulation(138lineswhichhaddatafor3samples)onlyreducedthenumberofQTLsidentifiedby5%whiledecreasingthenumberoflinesinthelargeBayShapopulationfrom411to165reducedthenumberofQTLsidentifiedby22%.Thissuggeststhatforionomics,likeothertraits[38],morelinesaremorebeneficialthanmorereplicates.Withthepossibilityofanalyticalorbiologicaloutliers,webelievethatn=2shouldbetheminimumnumberofreplicatesperline.However,theredoesnotappeartobeaneedtoincreasethenumberofplantsanalyzedforeachlinebeyondtwoifitwouldreducethenumberoflinesanalyzedormaketheexperimentscostorscopeunfeasible.

Severalstudiesexaminingelementalaccumulation[19,21,23]inA.thalianaRILpopulationshaveidentifiedmultipleepistaticinteractions.Incontrast,wefoundnosignificant(p-value,0.01)epistaticeffectsinthelargeBayShapopulationandonlyfivesignificantepistaticeffectsinthetwoCviLerexperiments,afewmorethanwouldbeexpectedbychancealone.NoepistaticinteractionswerefoundbetweenQTLsidentifiedusingcompositeintervalmapping(CIM).With411linesintheBayShapopulationwehadmorethansufficientstatisticalpowertodetect2wayepistaticinteractions.ThedifferenceamongpreviouslypublishedstudiesandoursmaybeduetoamoreconservativepermutationbasedsignificancecutoffinourRqtlanalysis.Ultimately,resolutionofthisquestionwillrequirethecloningofgenes

June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

underlyingtheseQTLsandidentifyingepistaticinteractionsbetweenthegenes.

Correlationanalysis

Foreachpairwisecombinationofelementsintheexperiment,PearsoncorrelationcoefficientswerefoundusingthetraycenteredsampledataforpairwisecompleteobservationsutilizingthecorrfunctioninR.Statisticallysignificantcorrelationswereidentifiedusingthet-distributionwithn-2degreesoffreedom(wheren=411intheBayShadata)wheret=(corr*sqrt(n22))/(sqrt(12corr2)),orequivalentlyusingtheF-distributionwith1andn-2degreesoffreedomwhereF=(corr2*(n22))/(12corr2).AconservativeBonferronicorrectionwasappliedtothealphalevelof0.05toadjustforthe19elements.Atotalof171pairwiseelementalcombinationsexist(19choose2=(19)*(1921)/2=171).Thus,onlycorrelationshavingap-valuebelow0.05/171(,2.92461024)wereidentifiedasbeingsignificant.

Conclusion

WehavedemonstratedthatnaturalaccessionsofA.thalianaprovideanexcellentresourceforionomicgenediscovery.Thereisastrongeffectofthegrowthenvironmentonboththeelement-to-elementcorrelationsandtheQTLsunderlyingelementalaccu-mulation.Alltheionomicdataforshoottissuediscussedispubliclyaccessibleforviewing,downloadandre-analysisattheonlinePurdueIonomicsInformationManagementSystem(PiiMS;accessedatwww.ionomicshub.org).

MaterialsandMethodsPlantGrowth

AlloftheseedsfortheA.thalianaaccessionsusedinthisstudywereobtainedfromtheABRC.Theaccessionswereplantedinseven(5.25065.250)potsorintworowsofa20-row(10.506210)tray.Theplantingpatternwasvariedacrosstraystoreducepositionaleffects.Plantsweregrowninaclimate-controlledroomat19–24uCwith10hoursoflightat80to100mEfor36to40days.ThegrowthmediumwereSunshinemixLB2(SunGroHorticulture)(screenedthrougha1/4inchmesh)andPromix(PremierHorticulture).Bothmixturesarepeatbased,buttheydifferintheidentityandgradeoftheothercomponents.Notably,Sunshinehasgypsum,whilePromixhasvermiculiteaswellasaddedmacro-andmicronutrients.BothgrowthmediawereamendedwithLi,Na,Co,Ni,As,Se,Rb,SrandCdatsub-toxicconcentrations[39].TheCviLerlowFe(n=1,151individuals)populationwasgrowninSunshinemixLB2andwateredwith0.25XHoaglandssolution+2.5ml/LFetartrate.TheCviLer(n=3,161individuals)andBayShasmall(n=3,165individuals)populationwasgrowninSunshinemixLB2andwateredwith0.25XHoaglandssolution(FileS7)withadditionalFe(1mlFeHBED/L).ThelargeBayShapopulations(n=2,411individuals)wasgrowninPromix(PremierHorticulture)andalsowateredwith0.25XHoaglandssolution+1mlFeHBED/L.ColLerpopulation(n=3,93individuals)wasgrowninSunshinemixLB2andwateredwith0.25XHoaglandssolution+1mlFeHBED/L.Allplantswerewateredat3to4dayintervals.

QTLAnalysis

Eachtrayforeachofthefivepopulationsexaminedwasnormalizedasfollows.ThedataforeachelementwasdividedintoquartilesandtheInterQuartileRange(IQR),theupperandlowerboundsofthemiddletwoquartiles,wasdetermined.Elementconcentration,whichwasoutsidetherangeoflowerboundminus3timesIQRtoupperboundplus3timesIQR,wasremoved.Eachtraywascenteredsothattheaverageofthetwoparentlinesgrowninthetraywasthesameacrossalltrays.ThemeanvalueacrossalltraysforeachlinewasthenusedforQTLanalysis.ThemarkersetswereobtainedfromtheNaturalwebsite(CviLer,www.dpw.wau.nl/natural/),theBayShawebsite(http://dbsgap.versailles.inra.fr/vnat/Documentation/33/DOC.html)andSing-eretal.[41]forColLer.WeusedreducedmarkersetsfortheCviLerandColLermapping.ThemarkermapsforallQTLmappingexperimentsareincludedassupplementalFileS6.NotethatthechromosomenumberingandorientationdoesnotmatchthefinalQTLresults,aswechangedtheoutputvaluestomatchthepublishedmaps.Weperformedcompositeintervalmapping(CIM)usingQTLCartographerversion1.17f[42],withCIM[43,44]model6,awalkspeedof2cM,awindowof5cM,usingtheforwardandbackwardregressionmethod.Todeterminethresholdvalues,thepermutationmethodwasused[45]with1000permutationsperelementperpopulation(TableS3).

Afterlocatingallmaineffect(single)QTL,epistaticinteractionsbetweentwolociwereinvestigatedusingthescantwofunctioninthesoftwareR/qtl[46].Testswereconductedbetweenallpairwiseloci(bothwithinandbetweenchromosomes)usingtheHaley-Knottregressionwitha2cMwalkingspeed.Onethousandpermutationswereperformedforeachoftheionomictraitstodeterminethegenome-widesignificancethreshold.

IonomicAnalysis

Plantsweresampledbyremoving2–3leaves(0.001–0.005gfreshweight)andwashingwith18MVwaterbeforebeingplacedinPyrexdigestiontubes.Sampledplantmaterialwasdriedfor24hrat88uC,andweighedbeforeopen-airdigestioninPyrextubesusing0.7mLconcentratedHNO3(MallinckrodtARselectgrade)at110uCfor5hours.Eachsamplewasdilutedto6.0mLwith18MVwaterandanalyzedforLi,B,Na,Mg,P,K,Ca,Mn,Fe,Co,Ni,Cu,Zn,As,Se,MoandCd(andRbandSrinsomeexperiments)onanElanDRCeICP-MS(PerkinElmerSciex).NISTtraceablecalibrationstandards(ULTRAScientific,NorthKingstownRI)wereusedforthecalibration.Seedfromtwoplantsofeachaccessionwasobtainedbyincreasingtheirdaylengthto24hours.Threeaccessions(1372,1602and1264)werekeptat4uCfor1monthtoinduceflowering.Theseedwasanalyzedsimilarlytotheplanttissue.Theentiregrowthandanalysisprocedurewasrepeatedtomeasurereproducibility.AllexperimentsweremanagedusingthePurdueIonomicsInforma-tionManagementSystem(PiiMS)[40],andallionomicdataispubliclyavailableforviewing,downloadandreanalysisatwww.ionomicshub.org.

PLoSONE|www.plosone.org

8

ExperimentalDesign

Totesttheeffectsofchangingthenumberofreplicatesorthenumberoflines,weperformedtwoinsilicoexperimentsusingtheQTLdata.1.FromtheCviLerhighFepopulation,wetookthe138linesinwhich3sampleswereanalyzedperlineandmade20subsetsoftheoutlierremoved,traycentered,data:10subsetsinwhich2sampleswererandomlyselectedfromeachlineand10subsetsinwhich1samplewasselectedfromeachline.WethenperformedQTLanalysisasdescribedaboveonthe20subsetsaswellasthefulln=3dataforthe138lines.TableS4acontainsthemeannumberofQTLsidentifiedwithineachsetof10experiments.2.WetookthedatafromthelargeBayShapopulationandmadeasubsetofthe165linesthatwereanalyzedinthesmallBayShapopulationperformedQTLanalysisasdescribedabove.AcomparisonofthenumberofQTLsidentifiedinthisexperimentwiththatofthefull411linesisshowninTableS4b.

June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

SupportingInformation

TableS1Significantpairwisecomparisonsbetween12acces-

Foundat:doi:10.1371/journal.pone.0011081.s006(0.06MBPDF)

FileS3

sionsofA.thaliana.Lineeffectindicatessignificantdifferences(p,0.05)betweenaccessionsforthatelement.A.A.thalianaleafdata.B.A.thalianaseeddata.

Foundat:doi:10.1371/journal.pone.0011081.s001(0.03MBDOC)

TableS2AllQTLforeachelementacrossall5RIL

populations.LOD(logarithmoftheodds)scoreabovetheLODthresholdisindicatedforeachQTL.QTLregionareindicatedbyMIstartandMIendandtheprojectedQTLlocationisgivenincM.CofactorsindicatesthenumberofcofactorsusedintheCIMmodel.Thresholdvaluesindicatethe99%confidenceintervalderivedfrom1000permutations.

Foundat:doi:10.1371/journal.pone.0011081.s002(0.37MBDOC)

Two-wayepistaticinteractionsforeachRILpopula-tionacrossall5chromosomes.Lod.fullisthelog-oddsratioofthefullmodelwithtwolociandtheirinteractioncomparedtothenullmodelwithnoQTL.Lod.fv1isthelog-oddsratioofthefullmodelcomparedtothebestsingleQTLmodelwithonelocusoneitherchromosomeAorB(notnecessarilyatthesamelocationasthefullmodelloci).Lod.intisthelog-oddsratiooftheinteractiontermwhichisfoundbycomparingthefullmodelwithaninteractionterm,tothetwoQTLmodelwithnointeractionterm.Lod.addisthelog-oddsratiooftheadditiveeffects,foundbycomparingthetwoQTLmodel(nointeractionterm)tothenullmodelwithnoQTL.Lod.av1isthelog-oddsratiocomparingthetwoQTLmodelwithnointeractionterm,tothebestsingleQTLmodelwithonelocusoneitherchromosomeAorB(notnecessarilyatthesamelocationasinthetwoQTLmodel).

Foundat:doi:10.1371/journal.pone.0011081.s003(0.04MBDOC)

TableS3

FrequencyplotsofparentallinesandRILsforeach

elementacrossthe5RILpopulations.X-axisrepresentsthecenteredPPM(SeeMethods)ofindicatedelement.Y-axisindicatesfrequencyofoccurrence.Blackverticallinesindicatethe95%confidenceintervaloftheparentsdistribution(i.e.lowerparent21.96SD(pooled)tohigherparent+1.96SD(pooled)).ComparisonBaySha,growninPromixsoil.

Foundat:doi:10.1371/journal.pone.0011081.s007(0.06MBPDF)

FrequencyplotsofparentallinesandRILsforeach

elementacrossthe5RILpopulations.X-axisrepresentsthecenteredPPM(SeeMethods)ofindicatedelement.Y-axisindicatesfrequencyofoccurrence.Blackverticallinesindicatethe95%confidenceintervaloftheparentsdistribution(i.e.lowerparent21.96SD(pooled)tohigherparent+1.96SD(pooled)).ComparisonofCviLer,highFeenvironment.

Foundat:doi:10.1371/journal.pone.0011081.s008(0.06MBPDF)

FrequencyplotsofparentallinesandRILsforeach

elementacrossthe5RILpopulations.X-axisrepresentsthecenteredPPM(SeeMethods)ofindicatedelement.Y-axisindicatesfrequencyofoccurrence.Blackverticallinesindicatethe95%confidenceintervaloftheparentsdistribution(i.e.lowerparent21.96SD(pooled)tohigherparent+1.96SD(pooled)).ComparisonofCviLer,lowFeenvironment.

Foundat:doi:10.1371/journal.pone.0011081.s009(0.06MBPDF)

FileS4

FileS5

FileS6Estimatedgeneticmaps.Estimatedgeneticmapsusing

Resultsofinsilicoexperimentaldesignsimulations.A.

NumberofQTLsdetectedinthesubsetofCviLerlineswith3samplesanalyzed.Firsttworowsindicatetheaverageof10randomlygeneratedsubsetswithn=1or2,thirdrowindicatesthenumberofQTLsidentifiedwiththefulln=3dataset.B.QTLsidentifiedfromthelargeBayShaexperimentwheneitherthefull411linesorthesubsetof165linescorrespondingtothesmallerBayShasetwasused.

Foundat:doi:10.1371/journal.pone.0011081.s004(0.05MBDOC)

TableS4

FileS1FrequencyplotsofparentallinesandRILsforeach

markerdataforourRILpopulationsinQTLCartographerdisplay.Mapfunctionandunitofmeasurementareincludedatthetopofeachmapestimatefollowedbynumberofchromosomes,totalnumberofmarkersmapped,meanandstandarddeviationformarkersandinter-markerdistance.Thetableisarepresen-tationofmarkerdistancebetweenmarkers,acrossall5Arabidopsisthalianachromosomes.Finally,alistofmarkernameandorderacrosschromosomesisincludedforeachpopulation.1.MapdatafortheBayShapopulations.2.MapdatafortheColLerpopulation.3.MapdatafortheCviLerLowFepopulation.4.MapdatafortheCviLerHighFepopulation.

Foundat:doi:10.1371/journal.pone.0011081.s010(0.03MBTXT)

HoaglandsMediaRecipe.ModifiedHoaglandsmedia

usedinthisstudy.

Foundat:doi:10.1371/journal.pone.0011081.s011(0.04MBDOC)

FileS7

elementacrossthe5RILpopulations.X-axisrepresentsthecenteredPPM(SeeMethods)ofindicatedelement.Y-axisindicatesfrequencyofoccurrence.Blackverticallinesindicatethe95%confidenceintervaloftheparentsdistribution(i.e.lowerparent21.96SD(pooled)tohigherparent+1.96SD(pooled))1.1.ComparisonofColLer.

Foundat:doi:10.1371/journal.pone.0011081.s005(0.06MBPDF)

FileS2FrequencyplotsofparentallinesandRILsforeach

Acknowledgments

WewouldliketothanktheArabidopsisBiologicalResourceCenter(ABRC)andthePurdueIonomicsFacility.EB,TA,IA,CO,AG,andIBanalyzedtheSunshinehighFeBayShapopulationaspartofDr.RebeccaDoerges’QTLclass(Stats549)atPurdueUniversityandgratefullyacknowledgeherassistanceandfeedback.

elementacrossthe5RILpopulations.X-axisrepresentsthecenteredPPM(SeeMethods)ofindicatedelement.Y-axisindicatesfrequencyofoccurrence.Blackverticallinesindicatethe95%confidenceintervaloftheparentsdistribution(i.e.lowerparent21.96SD(pooled)tohigherparent+1.96SD(pooled))2.ComparisonofBaySha,growninSunshineSoil.

AuthorContributions

Conceivedanddesignedtheexperiments:JFHMLGDESIB.Performedtheexperiments:ARBLEY.Analyzedthedata:EBTAIAAGCOBLOHMZIB.Wrotethepaper:EBTAMLGDESIB.

PLoSONE|www.plosone.org9June2010|Volume5|Issue6|e11081

Nat.IonomicVar.inArab.

References

1.Alonso-BlancoC,KoornneefM(2000)NaturallyoccurringvariationinArabidopsis:anunderexploitedresourceforplantgenetics.TrendsPlantSci5:22–29.

2.ParanI,ZamirD(2003)Quantitativetraitsinplants:beyondtheQTL.TrendsGenet19:303–306.

3.KoornneefM,Alonso-BlancoC,VreugdenhilD(2004)NaturallyoccurringgeneticvariationinArabidopsisthaliana.AnnuRevPlantBiol55:141–172.4.KeurentjesJ,KoorneefM,VreugdenhilD(2008)Quantitativegeneticsintheageofomics.CurrOpinPlantBiol11:123–128.

5.SaltD,BaxterI,LahnerB(2008)Ionomicsandthestudyoftheplantionome.AnnRevPlantBio59:709–733.

6.BentsinkL,YuanK,KoorneefM,VreugdenhilD(2003)ThegeneticsofphytateandphosphateaccumuulationinseedsandleavesofArabidopsisthaliana,usingnaturalvariation.TheorApplGenet106:1234–1243.

7.RauhL,BastenC,BucklerSt(2002)QuantitativetraitlocianalysisofgrowthresponsetovaryingnitrogensourcesinArabidopsisthaliana.TheorApplGenet104:743–750.

8.LoudetO,ChaillouS,MerigoutP,TalbotecJ,Daniel-VedeleF(2003)QuantitativetraitlocianalysisofnitrogenuseefficiencyinArabidopsis.PlantPhysiol131:345–358.

9.HoekengaOA,MaronLG,PinerosMA,CancadoGM,ShaffJ,etal.(2006)AtALMT1,whichencodesamalatetransporter,isidentifiedasoneofseveralgenescriticalforaluminumtoleranceinArabidopsis.ProcNatlAcadSciUSA103:9738–9743.

10.KobayashiY,KoyamaH(2002)QTLanalysisofAltoleranceinrecombinant

inbredlinesofArabidopsisthaliana.PlantCellPhysiol43:1526–1533.

11.HoekengaOA,VisionTJ,ShaffJE,MonforteAJ,LeeGP,etal.(2003)

IdentificationandcharacterizationofaluminumtolerancelociinArabidopsis(Landsbergerecta6Columbia)byquantitativetraitlocusmapping.Aphysio-logicallysimplebutgeneticallycomplextrait.PlantPhysiol132:936–948.

12.PayneK,BowenH,HammondJ,HamptonC,LynnJ,etal.(2004)Natural

geneticvariationincaesium(Cs)accumulationbyArabidopsisthaliana.NewPhytol162:535–548.

13.ZhangL,ByrnePF,Pilon-SmitsEA(2006)Mappingquantitativetraitloci

associatedwithselenatetoleranceinArabidopsisthaliana.NewPhytol170:33–42.

14.ZhangL,Abdel-GhanySE,FreemanJL,AckleyAR,SchavonM,etal.(2006)

InvestigationofselenatetolerancemechanismsinArabidopsisthaliana.PhysiolPlant.PhysiolPlant128:212–223.

15.BorevitzJO,NordborgM(2003)Theimpactofgenomicsonthestudyofnatural

variationinArabidopsis.PlantPhysiol132:718–725.

16.RusA,BaxterI,MuthukumarB,GustinJ,LahnerB,etal.(2006)Natural

VariantsofAtHKT1EnhanceNa(+)AccumulationinTwoWildPopulationsofArabidopsis.PLoSGenet2:e210.

17.BaxterI,HosmaniP,RusA,LahnerB,BorevitzJ,etal.(2009)Rootsuberin

formsanextracellularbarrierthataffectswaterrelationsandmineralnutritioninArabidopsis.PLoSBiol5:e1000492.

18.MorrisseyJ,BaxterIR,LeeJ,LiL,LahnerB,etal.(2009)Therferroportin

metaleffluxproteinsfucntioninironandcolbalthomeostasisinArabidopsis.ThePlantCell.

19.GhandilyanA,IlkN,HanhartC,MbengueM,BarbozaL,etal.(2009)Astrong

effectofgrowthmediumandorgantypeontheidentificationofQTLsforphytateandmineralconcentrationsinthreeArabidopsisthalianaRILpopulations.JournalofExperimentalBiology60:1409–1425.

20.WatersB,GrusakMA(2008)Quantitativetraitlocusmappingforseedmineral

concentrationsintwoArabidopsisthalianarecombinantinbredpopulations.NewPhytol179:1033–1047.

21.GhandilyanA,BarbozaL,Tisne´S,GrainerC,ReymondM,etal.(2009)

GeneticsanalysisidentifiesquantitativetraitlocicontrollingrosettemineralconcentrationsinArabidopsisthalianaunderdrought.NewPhytol184:180–192.22.BaxterIR,VitekO,LahnerB,MuthukumarB,BorghiM,etal.(2008)Theleaf

ionomeasamultivariablesystemtodetectaplant’sphysiologicalstatus.PNAS105:12081–12086.

23.LoudetO,Saliba-ColombaniV,CamilleriC,CalengeF,GaudonV,etal.

(2007)NaturalvariationforsulfatecontentinArabidopsisthalianaishighlycontrolledbyAPR2.NatureGenetics39:896–900.

24.ErnstWHO,NelissenHJM,TenBookumWM(2000)Combinationtoxicology

ofmetal-enrichedsoils:PhysiologicalresponsesofaZn-andCd-resistantecotypesofSilenevulgarisonpolymetallicsoils.EnvironmentalandExperimentalBotany43:55–71.

25.BaxterI,MuthukumarB,ParkH,BuchnerP,LahnerB,etal.(2008)Variation

inmolybdenumcontentacrossbroadlydistributedpopulationsofArabidopsisthalianaiscontrolledbyamitochondrialmolybdenumtransporter(MOT1).PLoSBiol4:e1000004.

26.NordborgM,HuTT,IshimoY,ToomajianC,ZhengHG,etal.(2005)The

patternofpolymorphisminArabidopsisthaliana.PLOSBiol3:e196.

27.OteguiMS,CappR,StaehelinLA(2002)DevelopingseedsofArabidopsisstore

differentmineralsintwotypesofvacuolesandintheendoplasmicreticulum.PlantCell14:1311–1327.

28.WatersB,GrusakMA(2008)Whole-plantmineralpartitioningthroughoutthe

lifecycleinArabidopsisthalianaecotypesColumbia,Landsbergerecta,CapeVerdeIslands,andthemutantlineysl1ysl3.NewPhytol177:389–405.

29.LiuJ,YangJ,LiR,ShiL,ZhangC,etal.(2009)Analysisofgeneticfactorsthat

controlshootmineralconcentrationsinrapeseed(Brassicanapus)indifferentboronenvironments.PlantandSoil320:255–266.

30.WuJ,YuanY,ZhangX,ZhaoJ,SongX,etal.(2008)MappingQTLsfor

mineralaccumulationandshootdrybiomassunderdifferentZnnutritionalconditionsinChinesecabbage(BrassicarapaL.ssp.pekinensis).PlantandSoil310:25–40.

31.RaboyV,DickinsonDB,BelowFE(1984)Variationinseedtotalphosphorus,

phyticacid,zinc,calcium,magnesium,andproteinamonglinesofGlycinemaxandG.soja.CropScience24:431–434.

32.VreugdenhilD,AartsMGM,KoornneefM,NelissenH,ErnstWHO(2004)

NaturalvariationandQTLanalysisforcationicmineralcontentinseedsofArabidopsisthaliana.PlantCellEnviron27:828–839.

33.BroadleyMR,J.P.H,KingG,AstleyD,H.C.B,etal.(2008)Shootcalciumand

magnesiumconcentrationsdifferbetweensubtaxa,arehighlyheritable,andassociatewithpotentiallypleiotropiclociinBrassicaoleracea.PlantPhysiol146:1707–1720.

34.Garcia-OliveiraA,TanL,FuY,SunC(2009)Geneticidentificationof

QuantitativeTraitLociforcontentsofmineralnutrientsinricegrains.JournalofIntegrativePlantBiology51:84–92.

35.MissonJ,RaghothamaKG,JainA,JouhetJ,BlockMA,etal.(2005)Agenome-widetranscriptionalanalysisusingArabidopsisthalianaAffymetrixgenechipsdeterminedplantresponsestophosphatedeprivation.ProcNatlAcadSciUSA102:11934–11939.

36.HirschJ,MarinE,FlorianiM,ChiarenzaS,RichaudP,etal.(2006)Phosphate

deficiencypromotesmodificationofirondistributioninArabidopsisplants.Biochimie88:1767–1771.

37.WardJT,LahnerB,YakubovaE,SaltD,RaghothamaKG(2008)Theeffectof

ironontheprimaryrootelongationofArabidopsisduringphosphatedeficiency.PlantPhysiol147:1181–1191.

38.Flint-GarciaSA,ThuilletA,YuJ,PressoirG,RomeroSM,etal.(2005)Maize

associationpopulation:ahigh-resolutionplatformforquantitativetraitlocusdissection.ThePlantJournal44:1054–1064.

39.LahnerB,GongJ,MahmoudianM,SmithEL,AbidKB,etal.(2003)Genomic

scaleprofilingofnutrientandtraceelementsinArabidopsisthaliana.NatBiotechnol21:1215–1221.

40.BaxterI(2007)PurdueIonomicsInformationManagementSystem(PIIMS).An

IntegratedFunctionalGenomicsPlatform.PlantPhysiol;10.1104/pp.106.092528.41.SingerT,FanY,ChangHS,ZhuT,HazenSP,etal.(2006)Ahigh-resolution

mapofArabidopsisrecombinantinbredlinesbywhole-genomeexonarrayhybridization.PLoSGenet2:e144.

42.BastenC,WeirBS,ZengZB(2000)QTLCartographerversion1.17f.http://

statgen.ncsu.edu/qtlcart/.

43.ZengZB(1994)Precisionmappingofquantitativetraitloci.Genetics136:

1457–1468.

44.JansenRC(1994)Highresolutionofquantitativetraitsintomultiplelocivia

intervalmapping.GeneticsGenetics136:1447–1455.

45.ChurchhillGA,DoergeRW(1994)Empiricalthresholdvaluesforquantitative

traitmapping.Genetics138:963–971.

46.BromanKW,WuH,SenŒ,ChurchhillGA(2003)R/qtl:QTLmappingin

experimentalcrosses.Bioinformatics19:889–890.

PLoSONE|www.plosone.org10June2010|Volume5|Issue6|e11081

因篇幅问题不能全部显示,请点此查看更多更全内容